2 resultados para isomerization

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

(A) In recent years, considerable amount of effort has contributed towards enhancing our understanding of the new photoswitch, cyclic azobenzene, particularly from the theoretical point of view. However, the challenging part with this system was poor efficiency of its synthesis from 2,2’- dinitrodibenzyl and lack of effective methods for further modification which would be useful to incorporate this system into biomolecules as a photoswitch. We report the synthesis of cyclic azobenzene and analogues from 2,2’-dinitrodibenzyl, which would allow for further incorporation of this cyclic azobenzene into biomolecules. Reaction of 2,2’-dinitrodibenzyl with zinc metal powder in the presence of triethylammonium formate buffer (pH-9.5) gave a cyclic azoxybenzene, 11,12-dihydrodibenzo[c,g][1,2]diazocine-5-oxide. The latter compound was converted into cyclic azobenzene analogues (bromo-, chloro-, cyano-, and carboxyl) through subsequent transformations. The carboxylic acid analogue was reacted with D-threoninol to give the corresponding amide, which readily undergoes photo-isomerization upon illumination with light. Upon illumination with light at 400 nm, approximately 70% of cis- isomer of amide was isomerized to trans- isomer. It was observed that cis- to trans- isomerization reached the maximum steady state of light transmission after approximately 40 min, whereas the trans- to cis- isomerization approximately acquired in 2 h to regain full recovery of light transmission. Cyclic azobenzene phosphoramidite was synthesized from DMT-protected D-threoninol linked cyclic azobenzene. (B) In recent years, there has been considerable interest invested towards the synthesis of azobenzene analogues for incorporation into proteins. Among the many azobenzene analogues, the synthesis of bi-functional cyclic azobenzene analogues for the incorporation into proteins is relatively new. In this thesis, we report the synthesis of a cyclic azobenzene biscarboxylic acid from 4-(bromomethyl)benzonitrile. (C) Azobenzene has been widely used in the field of polymer science to study the surface morphology and surface properties of polymers. In this thesis, we report the incorporation of cyclic azobenzene into a commercial polymer 2- (hydroxyethyl)methacrylate. Samples collected after 24 h from the reaction solution showed approximately 9% of incorporation of cyclic azobenzene into polymer compared to samples collected after 10 h, which showed approximately 6% incorporation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.